On multiplicatively dependent linear numeration systems, and periodic points
نویسندگان
چکیده
منابع مشابه
On multiplicatively dependent linear numeration systems, and periodic points
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of...
متن کاملNumeration Systems, Linear Recurrences, and Regular Sets
A numeration system based on a strictly increasing sequence of positive integers u0 = 1, u1, u2, . . . expresses a non-negative integer n as a sum n = ∑i j=0 ajuj . In this case we say the string aiai−1 · · · a1a0 is a representation for n. If gcd(u0, u1, . . .) = g, then every sufficiently large multiple of g has some representation. If the lexicographic ordering on the representations is the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RAIRO - Theoretical Informatics and Applications
سال: 2002
ISSN: 0988-3754,1290-385X
DOI: 10.1051/ita:2002015